If it's not what You are looking for type in the equation solver your own equation and let us solve it.
294m^2-24=0
a = 294; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·294·(-24)
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-168}{2*294}=\frac{-168}{588} =-2/7 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+168}{2*294}=\frac{168}{588} =2/7 $
| 0.4/1=0.2/x= | | 50=z-28 | | 10+14=-3(6x-8) | | -4=5/6x-2/3x | | b-8=50 | | 20=-2(24-y)+3(y-4) | | 2a-20.3+a-3.5+a+1.7=18.5 | | 5/18b+1/6=1 | | 162^(2/3)=x | | 5(3x-9)-4=5(x-3)+16 | | -2(7+4m)+4(-8+2m)=-46 | | 14=v-24 | | k=68=21 | | 33x=240 | | (1/2)d=(2/3)d-8 | | 2(3x+8)=-48+10 | | g+420=825 | | 7*4c=+4)+6c | | 6t+5=25 | | j+218=825 | | (x)=x(x+24) | | 6t+5=30 | | s+185=311 | | 6t+25=30 | | 2s-7=-13 | | s/28=5 | | 4c+83=11 | | 8=t/24 | | q/7=4 | | -7.4x=16.99 | | 8+g=16 | | (x)=-0.8(x-1.5)(x-3.7) |